In silico photoactivation to quantify transmission dynamics in mitochondrial networks.

Abstract

<p>(A) Schematic representation of an <i>in silico</i> photoactivation. 10% of mitochondrial mass is assigned a GFP label, which transmit through the cell upon a fusion event: fusion of a mitochondrion with a GFP-labeled mitochondrion, results in a parent GFP-labeled mitochondrion, which upon fission results in two GFP-labeled daughter mitochondria. (B) Transmission dynamic of photoactivated GFP across the mitochondria population moving with free motion (ϑ<sub>1</sub> ϵ [0°, 360°]), starting from 10% of labeled mitochondria (green). Simulations were performed with total mitochondrial masses of 100 and 300 and three different fusion/fission probability rates: F<sub>p</sub>/f<sub>p</sub> = 20%/80% (dotted line), F<sub>p</sub>/f<sub>p</sub> = 50%/50% (solid line) and F<sub>p</sub>/f<sub>p</sub> = 80%/20% (dashed line). 100 simulations were performed each and plots represent the average values normalized to the total mass at time point 0. Blue regions indicate the time to 50% network transmission with fusion/fission probability rates of 50%/50%. (C) Same as (B) but with restricted movement, ϑ<sub>1</sub> ϵ [0°, 10°]. Pink regions indicate the time to 50% network transmission with fusion/fission probability rates of 50%/50%. (D) Effect of the mitochondria mobility on transmission dynamics in the case of free movement (blue circles, line) and restricted movement (pink triangles, line). Detailed representation of the time needed to the GFP labeled mitochondrial population to exceed the unlabeled population for an initial total mitochondrial mass of 300 with a fixed fusion/fission probability rate of 50%/50% and three different velocities: v<sub>l</sub> ϵ [0, 0.44] μms<sup>-1</sup>, v<sub>h</sub> ϵ [0, 1] μms<sup>-1</sup> and v, equal to v<sub>l</sub> in the perinuclear region and to v<sub>h</sub> outside.</p

    Similar works

    Full text

    thumbnail-image