Porosity-Enhanced Polymers from Hyper-Cross-Linked Polymer Precursors

Abstract

Hyper-cross-linked polymers (HCPs) have aroused great interest because of their potential applications in adsorbing greenhouse gases and volatile organic compounds. However, the selection of raw materials and the postcontrol of the porosity of HCPs remain a challenge. Here, we developed new porosity-enhanced materials by chemically creating additional pores in polymer-based HCPs. The as-prepared material presents a high surface area (1201 m<sup>2</sup> g<sup>–1</sup>), large microporous volume, and high chemical stability even in concentrated acid, thus demonstrating potential in gas capture and storage (CO<sub>2</sub>: 15.31 wt % at 273 K/1.0 bar; selectivity for CO<sub>2</sub> against N<sub>2</sub>: 36.6; and large adsorption capacity for six organic vapors). This method of creating additional pores in polymer-based HCPs may open doors to the creation of novel porosity-enhanced materials suitable for high-performance adsorbents

    Similar works

    Full text

    thumbnail-image

    Available Versions