Loading Cd<sub>0.5</sub>Zn<sub>0.5</sub>S Quantum Dots onto Onion-Like Carbon Nanoparticles to Boost Photocatalytic Hydrogen Generation

Abstract

Carbon dots (C dots, size < 10 nm) have been conventionally decorated onto semiconductor matrixes for photocatalytic H<sub>2</sub> evolution, but the efficiency is largely limited by the low loading ratio of the C dots on the photocatalyst. Here, we propose an inverse structure of Cd<sub>0.5</sub>Zn<sub>0.5</sub>S quantum dots (QDs) loaded onto the onionlike carbon (OLC) matrix for noble metal-free photocatalytic H<sub>2</sub> evolution. Cd<sub>0.5</sub>Zn<sub>0.5</sub>S QDs (6.9 nm) were uniformly distributed on an OLC (30 nm) matrix with both upconverted and downconverted photoluminescence property. Such an inverse structure allows the full optimization of the QD/OLC interfaces for effective energy transfer and charge separation, both of which contribute to efficient H<sub>2</sub> generation. An optimized H<sub>2</sub> generation rate of 2018 μmol/h/g (under the irradiation of visible light) and 58.6 μmol/h/g (under the irradiation of 550–900 nm light) was achieved in the Cd<sub>0.5</sub>Zn<sub>0.5</sub>S/OLC composite samples. The present work shows that using the OLC matrix in such a reverse construction is a promising strategy for noble metal-free solar hydrogen production

    Similar works

    Full text

    thumbnail-image

    Available Versions