This paper argues that there has not been enough discussion in the field of
applications of Gaussian Process for the fast moving consumer goods industry.
Yet, this technique can be important as it e.g., can provide automatic feature
relevance determination and the posterior mean can unlock insights on the data.
Significant challenges are the large size and high dimensionality of commercial
data at a point of sale. The study reviews approaches in the Gaussian Processes
modeling for large data sets, evaluates their performance on commercial sales
and shows value of this type of models as a decision-making tool for
management.Comment: 1o pages, 5 figure