We explore several new converse bounds for classical communication over
quantum channels in both the one-shot and asymptotic regimes. First, we show
that the Matthews-Wehner meta-converse bound for entanglement-assisted
classical communication can be achieved by activated, no-signalling assisted
codes, suitably generalizing a result for classical channels. Second, we derive
a new efficiently computable meta-converse on the amount of classical
information unassisted codes can transmit over a single use of a quantum
channel. As applications, we provide a finite resource analysis of classical
communication over quantum erasure channels, including the second-order and
moderate deviation asymptotics. Third, we explore the asymptotic analogue of
our new meta-converse, the Υ-information of the channel. We show that
its regularization is an upper bound on the classical capacity, which is
generally tighter than the entanglement-assisted capacity and other known
efficiently computable strong converse bounds. For covariant channels we show
that the Υ-information is a strong converse bound.Comment: v3: published version; v2: 18 pages, presentation and results
improve