Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page