Ambipolar Quantum-Dot-Based Low-Voltage Nonvolatile
Memory with Double Floating Gates
- Publication date
- Publisher
Abstract
Considerable research efforts have
been devoted to promoting memory performance, especially the memory
window and retention time. In this work, we develop an innovative
field-effect-transistor memory with graphene oxide (GO)/gold nanoparticles
(Au NPs) as double floating gates (DFG) and PbS quantum dots (QDs)
as the semiconductor layer. QDs can provide both electrons and holes
in the channel, which offers a chance for the floating gates to trap
both of them to achieve bidirectional threshold voltage shifts after
programming and erasing operations. Due to the DFG structure covering
the GO sheets on the Au NP monolayer, the enhanced memory window (∼2.72
V at a programming/erasing voltage of ±10 V) can be attributed
to more charge carriers being trapped in the floating gates. More
importantly, because of the different energy levels between GO and
Au NPs, the DFG construction brings about an energy barrier that prevents
the trapped charges from leaking back to the channel, so that the
retention capability is significantly improved. The outstanding memory
performance will give the QD-based DFG memory great potential to have
its own place in the flash memory market