Oil-Repellent Antifogging Films with Water-Enabled Functional and Structural Healing Ability

Abstract

Healable oil-repellent antifogging films are fabricated by layer-by-layer assembly of hyaluronic acid (HA) and branched poly­(ethylenimine) (bPEI), followed by immersion in the aqueous solutions of perfluorooctanesulfonic acid potassium salt (PFOS). The loading of PFOS endows the HA/bPEI films with oil repellency while maintaining its original hydrophilicity. The resulting films have an excellent antifogging ability, and various organic liquids can easily slide down the slightly tilted films (<10°) without any residue. Through water-assisted migration of PFOS and polyelectrolytes, oil-repellent antifogging films are able to repetitively and autonomously recover their damaged oil repellency and transparency caused by plasma etching, cutting, or scratching, prolonging their life span. The as-developed healable oil-repellent antifogging films have potential application as antifingerprint coatings for touch screens, antigraffiti coatings for signs and shop windows, and antifogging coatings for lenses, mirrors, and windshields

    Similar works

    Full text

    thumbnail-image

    Available Versions