Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands

Abstract

The synthesis of the phosphine-cyclopentanesulfonate pro-ligands Li/K­[2-PPh<sub>2</sub>-cyclopentanesulfonate] (Li/K­[<b>2a</b>]), Li/K­[2-P­(2-OMe-Ph)<sub>2</sub>-cyclopentanesulfonate] (Li/K­[<b>2b</b>]), and H­[<b>2b</b>], and the corresponding Pd­(II) alkyl complexes (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2a</b>)­PdMe­(pyridine) (<b>3a</b>) and (κ<sup>2</sup>-<i>P</i>,<i>O</i>-<b>2b</b>)­PdMe­(pyridine) (<b>3b</b>) is described. The sulfonate-bridged base-free dimer {(<b>2b</b>)­PdMe}<sub>2</sub> (<b>4b</b>) was synthesized by abstraction of pyridine from <b>3b</b> using B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>. The borane-coordinated base-free dimer [{<b>2b·</b>B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>}­PdMe]<sub>2</sub> (<b>5b</b>), in which B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> binds to a sulfonate oxygen, was prepared by addition of 1 equiv of B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> per Pd to <b>4b</b> or addition of 2 equiv of B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> to <b>3b</b>. Compounds <b>3b</b>, <b>4b</b>, and <b>5b</b> polymerize ethylene with low activity (up to 210 kg mol<sup>–1</sup> h<sup>–1</sup> at 250 psi and 80 °C) to linear polyethylene (<i>M</i><sub>n</sub> = 1950–5250 Da) with predominantly internal olefin placements. <b>3b</b> and <b>4b</b> copolymerize ethylene with methyl acrylate to linear copolymers that contain up to 11.7 mol % methyl acrylate, which is incorporated as −CH<sub>2</sub>CH­(CO<sub>2</sub>Me)­CH<sub>2</sub>– (80%) in-chain units and −CH<sub>2</sub>CH­(CO<sub>2</sub>Me)­Me (8%) and −CH<sub>2</sub>CHCH­(CO<sub>2</sub>Me) (12%) chain-end units. <b>3b</b> and <b>4b</b> also copolymerize ethylene with vinyl fluoride to linear copolymers that contain up to 0.41 mol % vinyl fluoride, which is incorporated as −CH<sub>2</sub>CHFCH<sub>2</sub>– (∼80%) in-chain units and −CH<sub>2</sub>CF<sub>2</sub>H (7%), −CH<sub>2</sub>CHFCH<sub>3</sub> (5%), and −CH<sub>2</sub>CH<sub>2</sub>F (8%) chain-end units. Complexes <b>3b</b> and <b>4b</b> are more stable and active in ethylene polymerization than analogous (PAr<sub>2</sub>-<i>CH</i><sub>2</sub><i>CH</i><sub>2</sub>SO<sub>3</sub>)­PdR catalysts, but are less active than analogous (PAr<sub>2</sub>-<i>arene</i>sulfonate)­PdR catalysts. Low-temperature NMR studies show that <b>4b</b> reacts with ethylene below −10 °C to form the ethylene adduct <i>cis</i>-<i>P</i>,<i>R</i>-(<b>2b</b>)­PdMe­(ethylene) (<b>7b</b>), which undergoes ethylene insertion at 5 °C. DFT calculations for a model (PMe<sub>2</sub>-cyclopentanesulfonate)­Pd­(Pr)­(ethylene) species show that ethylene insertion proceeds by <i>cis</i>-<i>P</i>,<i>R</i>/<i>trans</i>-<i>P</i>,<i>R</i> isomerization followed by migratory insertion, and that the lower activity of <b>3b</b> and <b>4b</b> vis-à-vis analogous (PAr<sub>2</sub>-arenesulfonate)­PdR catalysts results from a higher barrier for migratory insertion of the <i>trans</i>-<i>P</i>,<i>R</i> isomer

    Similar works

    Full text

    thumbnail-image

    Available Versions