Development
of Bright and Biocompatible Nanoruby and
Its Application to Background-Free Time-Gated Imaging of G‑Protein-Coupled
Receptors
- Publication date
- Publisher
Abstract
At
the forefront of developing fluorescent probes for biological
imaging applications are enhancements aimed at increasing their brightness,
contrast, and photostability, especially toward demanding applications
of single-molecule detection. In comparison with existing probes,
nanorubies exhibit unlimited photostability and a long emission lifetime
(∼4 ms), which enable continuous imaging at single-particle
sensitivity in highly scattering and fluorescent biological specimens.
However, their wide application as fluorescence probes has so far
been hindered by the absence of facile methods for scaled-up high-volume
production and molecularly specific targeting. The present work encompasses
the large-scale production of colloidally stable nanoruby particles,
the demonstration of their biofunctionality and negligible cytotoxicity,
as well as the validation of its use for targeted biomolecular imaging.
In addition, optical characteristics of nanorubies are found to be
comparable or superior to those of state-of-the-art quantum dots.
Protocols of reproducible and robust coupling of functional proteins
to the nanoruby surface are also presented. As an example, NeutrAvidin-coupled
nanoruby show excellent affinity and specificity to μ-opioid
receptors in fixed and live cells, allowing wide-field imaging of
G-protein coupled receptors with single-particle sensitivity