Hierarchically Structured Ni Nanotube Array-Based
Integrated Electrodes for Water Splitting
- Publication date
- Publisher
Abstract
The development of
high-performance nonprecious electrocatalysts
for overall water splitting has attracted increasing attention but
remains a vital challenge. Herein, we report a ZnO-based template
method to fabricate Ni nanotube arrays (NTAs) anchored on nickel foil
for applications in the hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER). On the basis of this precursor electrode,
the three-dimensional NiSe<sub>2</sub> NTAs of unique sandwich-like
coaxial structure have been fabricated by electrodeposition of NiSe<sub>2</sub> on Ni NTAs, which exhibits high performance toward the HER
in both acidic and alkaline media. The method based on Ni NTAs can
be readily extended to fabricate Ni<sub>2</sub>P NTAs by gas–solid
phosphorization for the HER, and NiFeO<sub><i>x</i></sub> NTAs by anodic codeposition of Ni and Fe for the OER. Consequently,
an alkaline electrolyzer has been constructed using NiFeO<sub><i>x</i></sub> NTAs and NiSe<sub>2</sub> NTAs as anode and cathode,
respectively, which can realize overall water splitting with a current
density of 100 mA cm<sup>–2</sup> at an overpotential of 510
mV