'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
We consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, piecewise polynomials. We demonstrate that by using an adequate sampling kernel and a sampling rate greater or equal to the number of degrees of freedom per unit of time, one can uniquely reconstruct such signals. This proves a sampling theorem for a wide class of signals beyond bandlimited signals. Applications of this sampling theorem can be found in signal processing, communication systems and biological systems