research

A review of EBMT using proportional analogies

Abstract

Some years ago a number of papers reported an experimental implementation of Example Based Machine Translation (EBMT) using Proportional Analogy. This approach, a type of analogical learning, was attractive because of its simplicity; and the papers reported considerable success with the method. This paper reviews what we believe to be the totality of research reported using this method, as an introduction to our own experiments in this framework, reported in a companion paper. We report first some lack of clarity in the previously published work, and then report our findings that the purity of the proportional analogy approach imposes huge run-time complexity for the EBMT task even when heuristics as hinted at in the original literature are applied to reduce the amount of computation

    Similar works