research

Using TERp to augment the system combination for SMT

Abstract

TER-Plus (TERp) is an extended TER evaluation metric incorporating morphology, synonymy and paraphrases. There are three new edit operations in TERp: Stem Matches, Synonym Matches and Phrase Substitutions (Para-phrases). In this paper, we propose a TERp-based augmented system combination in terms of the backbone selection and consensus decoding network. Combining the new properties\ud of the TERp, we also propose a two-pass decoding strategy for the lattice-based phrase-level confusion network(CN) to generate the final result. The experiments conducted on the NIST2008 Chinese-to-English test set show that our TERp-based augmented system combination framework achieves significant improvements in terms of BLEU and TERp scores compared to the state-of-the-art word-level system combination framework and a TER-based combination strategy

    Similar works