In multi user Gaussian relay networks, it is desirable to transmit private
information to each user as well as common information to all of them. However,
the capacity region of such networks with both kinds of information is not easy
to characterize. The prior art used simple linear deterministic models in order
to approximate the capacities of these Gaussian networks. This paper discusses
the capacity region of the deterministic Y-channel with private and common
messages. In this channel, each user aims at delivering two private messages to
the other two users in addition to a common message directed towards both of
them. As there is no direct link between the users, all messages must pass
through an intermediate relay. We present outer-bounds on the rate region using
genie aided and cut-set bounds. Then, we develop a greedy scheme to define an
achievable region and show that at a certain number of levels at the relay, our
achievable region coincides with the upper bound. Finally, we argue that these
bounds for this setup are not sufficient to characterize the capacity region.Comment: 4 figures, 7 page