Methods. We used different galaxy classification techniques: human labeling,
multi-photometry diagrams, Naive Bayes, Logistic Regression, Support Vector
Machine, Random Forest, k-Nearest Neighbors, and k-fold validation. Results. We
present results of a binary automated morphological classification of galaxies
conducted by human labeling, multiphotometry, and supervised Machine Learning
methods. We applied its to the sample of galaxies from the SDSS DR9 with
redshifts of 0.02 < z < 0.1 and absolute stellar magnitudes of 24m < Mr <
19.4m. To study the classifier, we used absolute magnitudes: Mu, Mg, Mr , Mi,
Mz, Mu-Mr , Mg-Mi, Mu-Mg, Mr-Mz, and inverse concentration index to the center
R50/R90. Using the Support vector machine classifier and the data on color
indices, absolute magnitudes, inverse concentration index of galaxies with
visual morphological types, we were able to classify 316 031 galaxies from the
SDSS DR9 with unknown morphological types. Conclusions. The methods of Support
Vector Machine and Random Forest with Scikit-learn machine learning in Python
provide the highest accuracy for the binary galaxy morphological
classification: 96.4% correctly classified (96.1% early E and 96.9% late L
types) and 95.5% correctly classified (96.7% early E and 92.8% late L types),
respectively. Applying the Support Vector Machine for the sample of 316 031
galaxies from the SDSS DR9 at z < 0.1, we found 141 211 E and 174 820 L types
among them.Comment: 10 pages, 5 figures. The presentation of these results was given
during the EWASS-2017, Symposium "Astroinformatics: From Big Data to
Understanding the Universe at Large". It is vailable through
\url{http://space.asu.cas.cz/~ewass17-soc/Presentations/S14/Dobrycheva_987.pdf