We introduce a class of iterated integrals that generalize multiple
polylogarithms to elliptic curves. These elliptic multiple polylogarithms are
closely related to similar functions defined in pure math- ematics and string
theory. We then focus on the equal-mass and non-equal-mass sunrise integrals,
and we develop a formalism that enables us to compute these Feynman integrals
in terms of our iterated integrals on elliptic curves. The key idea is to use
integration-by-parts identities to identify a set of integral kernels, whose
precise form is determined by the branch points of the integral in question.
These kernels allow us to express all iterated integrals on an elliptic curve
in terms of them. The flexibility of our approach leads us to expect that it
will be applicable to a large variety of integrals in high-energy physics.Comment: 22 page