research

On Uniqueness And Existence of Conformally Compact Einstein Metrics with Homogeneous Conformal Infinity

Abstract

In this paper we show that for a generalized Berger metric g^\hat{g} on S3S^3 close to the round metric, the conformally compact Einstein (CCE) manifold (M,g)(M, g) with (S3,[g^])(S^3, [\hat{g}]) as its conformal infinity is unique up to isometries. For the high-dimensional case, we show that if g^\hat{g} is an SU(k+1)\text{SU}(k+1)-invariant metric on S2k+1S^{2k+1} for kβ‰₯1k\geq1, the non-positively curved CCE metric on the (2k+1)(2k+1)-ball B1(0)B_1(0) with (S2k+1,[g^])(S^{2k+1}, [\hat{g}]) as its conformal infinity is unique up to isometries. In particular, since in \cite{LiQingShi}, we proved that if the Yamabe constant of the conformal infinity Y(S2k+1,[g^])Y(S^{2k+1}, [\hat{g}]) is close to that of the round sphere then any CCE manifold filled in must be negatively curved and simply connected, therefore if g^\hat{g} is an SU(k+1)\text{SU}(k+1)-invariant metric on S2k+1S^{2k+1} which is close to the round metric, the CCE metric filled in is unique up to isometries. Using the continuity method, we prove an existence result of the non-positively curved CCE metric with prescribed conformal infinity (S2k+1,[g^])(S^{2k+1}, [\hat{g}]) when the metric g^\hat{g} is SU(k+1)\text{SU}(k+1)-invariant.Comment: Comments are welcome

    Similar works

    Full text

    thumbnail-image

    Available Versions