We develop tools to construct Lyapunov functionals on the space of
probability measures in order to investigate the convergence to global
equilibrium of a damped Euler system under the influence of external and
interaction potential forces with respect to the 2-Wasserstein distance. We
also discuss the overdamped limit to a nonlocal equation used in the modelling
of granular media with respect to the 2-Wasserstein distance, and provide
rigorous proofs for particular examples in one spatial dimension