'Columbia University Libraries/Information Services'
Doi
Abstract
We propose a model-based source separation system for use on single channel speech mixtures where the precise source characteristics are not known a priori. We do this by representing the space of source variation with a parametric signal model based on the eigenvoice technique for rapid speaker adaptation. We present an algorithm to infer the characteristics of the sources present in a mixture, allowing for significantly improved separation performance over that obtained using unadapted source models. The algorithm is evaluated on the task defined in the 2006 Speech Separation Challenge [1] and compared with separation using source-dependent models