Direct acoustics-to-word (A2W) models in the end-to-end paradigm have
received increasing attention compared to conventional sub-word based automatic
speech recognition models using phones, characters, or context-dependent hidden
Markov model states. This is because A2W models recognize words from speech
without any decoder, pronunciation lexicon, or externally-trained language
model, making training and decoding with such models simple. Prior work has
shown that A2W models require orders of magnitude more training data in order
to perform comparably to conventional models. Our work also showed this
accuracy gap when using the English Switchboard-Fisher data set. This paper
describes a recipe to train an A2W model that closes this gap and is at-par
with state-of-the-art sub-word based models. We achieve a word error rate of
8.8%/13.9% on the Hub5-2000 Switchboard/CallHome test sets without any decoder
or language model. We find that model initialization, training data order, and
regularization have the most impact on the A2W model performance. Next, we
present a joint word-character A2W model that learns to first spell the word
and then recognize it. This model provides a rich output to the user instead of
simple word hypotheses, making it especially useful in the case of words unseen
or rarely-seen during training.Comment: Submitted to IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 201