The strong growth condition (SGC) is known to be a sufficient condition for
linear convergence of the stochastic gradient method using a constant step-size
γ (SGM-CS). In this paper, we provide a necessary condition, for the
linear convergence of SGM-CS, that is weaker than SGC. Moreover, when this
necessary is violated up to a additive perturbation σ, we show that both
the projected stochastic gradient method using a constant step-size (PSGM-CS)
and the proximal stochastic gradient method exhibit linear convergence to a
noise dominated region, whose distance to the optimal solution is proportional
to γσ