For decades, context-dependent phonemes have been the dominant sub-word unit
for conventional acoustic modeling systems. This status quo has begun to be
challenged recently by end-to-end models which seek to combine acoustic,
pronunciation, and language model components into a single neural network. Such
systems, which typically predict graphemes or words, simplify the recognition
process since they remove the need for a separate expert-curated pronunciation
lexicon to map from phoneme-based units to words. However, there has been
little previous work comparing phoneme-based versus grapheme-based sub-word
units in the end-to-end modeling framework, to determine whether the gains from
such approaches are primarily due to the new probabilistic model, or from the
joint learning of the various components with grapheme-based units.
In this work, we conduct detailed experiments which are aimed at quantifying
the value of phoneme-based pronunciation lexica in the context of end-to-end
models. We examine phoneme-based end-to-end models, which are contrasted
against grapheme-based ones on a large vocabulary English Voice-search task,
where we find that graphemes do indeed outperform phonemes. We also compare
grapheme and phoneme-based approaches on a multi-dialect English task, which
once again confirm the superiority of graphemes, greatly simplifying the system
for recognizing multiple dialects