research

Spatially Inhomogeneous Superconducting State near Hc2H_{\rm c2} in UPd2_2Al3_3

Abstract

We have performed 27^{27}Al-NMR measurements on single-crystalline UPd2_2Al3_3 with the field parallel to the cc axis to investigate the superconducting (SC) properties near the upper critical field of superconductivity Hc2H_{\rm c2}. The broadening of the NMR linewidth below 14~K indicates the appearance of the internal field at the Al site, which originates from the antiferromagnetically ordered moments of U 5ff electrons. In the SC state well below μ0Hc2\mu_0H_{\rm c2} = 3.4~T, the broadening of the NMR linewidth due to the SC diamagnetism and a decrease in the Knight shift are observed, which are well-understood by the framework of spin-singlet superconductivity. In contrast, the Knight shift does not change below Tc(H)T_{\rm c}(H), and the NMR spectrum is broadened symmetrically in the SC state in the field range of 3~T <μ0H<μ0Hc2< \mu_0 H < \mu_0 H_{\rm c2}. The unusual NMR spectrum near Hc2H_{\rm c2} suggests that a spatially inhomogeneous SC state such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state would be realized.Comment: 5 pages, 5 figure

    Similar works