In this paper, we study the problem of learning image classification models
with label noise. Existing approaches depending on human supervision are
generally not scalable as manually identifying correct or incorrect labels is
time-consuming, whereas approaches not relying on human supervision are
scalable but less effective. To reduce the amount of human supervision for
label noise cleaning, we introduce CleanNet, a joint neural embedding network,
which only requires a fraction of the classes being manually verified to
provide the knowledge of label noise that can be transferred to other classes.
We further integrate CleanNet and conventional convolutional neural network
classifier into one framework for image classification learning. We demonstrate
the effectiveness of the proposed algorithm on both of the label noise
detection task and the image classification on noisy data task on several
large-scale datasets. Experimental results show that CleanNet can reduce label
noise detection error rate on held-out classes where no human supervision
available by 41.5% compared to current weakly supervised methods. It also
achieves 47% of the performance gain of verifying all images with only 3.2%
images verified on an image classification task. Source code and dataset will
be available at kuanghuei.github.io/CleanNetProject.Comment: Accepted to CVPR 201