Development of inexpensive and robust electrocatalysts towards oxygen reduction reaction
(ORR) is crucial for the cost-affordable manufacturing of metal-air batteries and fuel cells. Here
we show that cross-linked CoMoO4 nanosheets and reduced graphene oxide (CoMoO4/rGO) can
be integrated in a hybrid material under one-pot hydrothermal conditions, yielding a composite
material with promising catalytic activity for oxygen reduction reaction (ORR). Cyclic voltammetry
(CV) and linear sweep voltammetry (LSV) were used to investigate the efficiency of the fabricated
CoMoO4/rGO catalyst towards ORR in alkaline conditions. The CoMoO4/rGO composite revealed
the main reduction peak and onset potential centered at 0.78 and 0.89 V (vs. RHE), respectively.
This study shows that the CoMoO4/rGO composite is a highly promising catalyst for the ORR under
alkaline conditions, and potential noble metal replacement cathode in fuel cells and metal-air batteries