We derive optimal order a posteriori error estimates for fully discrete
approximations of linear Schr\"odinger-type equations, in the
L∞(L2)−norm. For the discretization in time we use the Crank-Nicolson
method, while for the space discretization we use finite element spaces that
are allowed to change in time. The derivation of the estimators is based on a
novel elliptic reconstruction that leads to estimates which reflect the
physical properties of Schr\"odinger equations. The final estimates are
obtained using energy techniques and residual-type estimators. Various
numerical experiments for the one-dimensional linear Schr\"odinger equation in
the semiclassical regime, verify and complement our theoretical results. The
numerical implementations are performed with both uniform partitions and
adaptivity in time and space. For adaptivity, we further develop and analyze an
existing time-space adaptive algorithm to the cases of Schr\"odinger equations.
The adaptive algorithm reduces the computational cost substantially and
provides efficient error control for the solution and the observables of the
problem, especially for small values of the Planck constant