research

A Posteriori error control & adaptivity for Crank-Nicolson finite element approximations for the linear Schrodinger equation

Abstract

We derive optimal order a posteriori error estimates for fully discrete approximations of linear Schr\"odinger-type equations, in the L(L2)L^\infty(L^2)-norm. For the discretization in time we use the Crank-Nicolson method, while for the space discretization we use finite element spaces that are allowed to change in time. The derivation of the estimators is based on a novel elliptic reconstruction that leads to estimates which reflect the physical properties of Schr\"odinger equations. The final estimates are obtained using energy techniques and residual-type estimators. Various numerical experiments for the one-dimensional linear Schr\"odinger equation in the semiclassical regime, verify and complement our theoretical results. The numerical implementations are performed with both uniform partitions and adaptivity in time and space. For adaptivity, we further develop and analyze an existing time-space adaptive algorithm to the cases of Schr\"odinger equations. The adaptive algorithm reduces the computational cost substantially and provides efficient error control for the solution and the observables of the problem, especially for small values of the Planck constant

    Similar works