A model problem is used to represent a typical image processing problem of reconstructing an unknown in the face of incomplete data. A consistent discretization for a vanishing regularization solution is defined so that, in the absence of noise, limits first with respect to regularization and then with respect to grid refinement agree with a continuum counterpart defined in terms of a saddle point formulation. It is proved and demonstrated computationally for an artificial example and for a realistic example with magnetic resonance images that a mixed finite element discretization is consistent in the sense defined here. On the other hand, it is demonstrated computationally that a standard finite element discretization is not consistent, and the reason for the inconsistency is suggested in terms of theoretical and computational evidence