research

Finite Element Approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise

Abstract

We consider an initial- and Dirichlet boundary- value problem for a linear Cahn-Hilliard-Cook equation, in one space dimension, forced by the space derivative of a space-time white noise. First, we propose an approximate regularized stochastic parabolic problem discretizing the noise using linear splines. Then fully-discrete approximations to the solution of the regularized problem are constructed using, for the discretization in space, a Galerkin finite element method based on H2H^2-piecewise polynomials, and, for time-stepping, the Backward Euler method. Finally, we derive strong a priori estimates for the modeling error and for the numerical approximation error to the solution of the regularized problem

    Similar works