We consider a distribution grid used to charge electric vehicles such that
voltage drops stay bounded. We model this as a class of resource-sharing
networks, known as bandwidth-sharing networks in the communication network
literature. We focus on resource-sharing networks that are driven by a class of
greedy control rules that can be implemented in a decentralized fashion. For a
large number of such control rules, we can characterize the performance of the
system by a fluid approximation. This leads to a set of dynamic equations that
take into account the stochastic behavior of EVs. We show that the invariant
point of these equations is unique and can be computed by solving a specific
ACOPF problem, which admits an exact convex relaxation. We illustrate our
findings with a case study using the SCE 47-bus network and several special
cases that allow for explicit computations.Comment: 13 pages, 8 figure