research

Electroweak corrections to vector-boson scattering

Abstract

We report on a recent calculation of the complete NLO QCD and electroweak corrections to the process pp→μ+νμe+νejjpp\to\mu^+\nu_\mu e^+\nu_ejj, i.e. like-sign charged vector-boson scattering. The computation is based on the complete amplitudes involving two different orders of the strong and electroweak coupling constants at tree level and three different orders at one-loop level. We find electroweak corrections of −13%-13\% for the fiducial cross section that are an intrinsic feature of the vector-boson scattering process. For differential distributions, the corrections reach up to −40%-40\% in the phase-space regions explored. At the NLO level a unique separation between vector-boson scattering and irreducible background processes is not possible any more at the level of Feynman diagrams.Comment: 6 pages, 8 eps figures, Prodeedings of the 13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology), 25-29 September, 2017, St. Gilgen, Austri

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021