Anticipating human intention by observing one's actions has many
applications. For instance, picking up a cellphone, then a charger (actions)
implies that one wants to charge the cellphone (intention). By anticipating the
intention, an intelligent system can guide the user to the closest power
outlet. We propose an on-wrist motion triggered sensing system for anticipating
daily intentions, where the on-wrist sensors help us to persistently observe
one's actions. The core of the system is a novel Recurrent Neural Network (RNN)
and Policy Network (PN), where the RNN encodes visual and motion observation to
anticipate intention, and the PN parsimoniously triggers the process of visual
observation to reduce computation requirement. We jointly trained the whole
network using policy gradient and cross-entropy loss. To evaluate, we collect
the first daily "intention" dataset consisting of 2379 videos with 34
intentions and 164 unique action sequences. Our method achieves 92.68%, 90.85%,
97.56% accuracy on three users while processing only 29% of the visual
observation on average