Millimeter wave (mmWave) communications have been considered as a key
technology for next generation cellular systems and Wi-Fi networks because of
its advances in providing orders-of-magnitude wider bandwidth than current
wireless networks. Economical and energy efficient analog/digial hybrid
precoding and combining transceivers have been often proposed for mmWave
massive multiple-input multiple-output (MIMO) systems to overcome the severe
propagation loss of mmWave channels. One major shortcoming of existing
solutions lies in the assumption of infinite or high-resolution phase shifters
(PSs) to realize the analog beamformers. However, low-resolution PSs are
typically adopted in practice to reduce the hardware cost and power
consumption. Motivated by this fact, in this paper, we investigate the
practical design of hybrid precoders and combiners with low-resolution PSs in
mmWave MIMO systems. In particular, we propose an iterative algorithm which
successively designs the low-resolution analog precoder and combiner pair for
each data stream, aiming at conditionally maximizing the spectral efficiency.
Then, the digital precoder and combiner are computed based on the obtained
effective baseband channel to further enhance the spectral efficiency. In an
effort to achieve an even more hardware-efficient large antenna array, we also
investigate the design of hybrid beamformers with one-bit resolution (binary)
PSs, and present a novel binary analog precoder and combiner optimization
algorithm with quadratic complexity in the number of antennas. The proposed
low-resolution hybrid beamforming design is further extended to multiuser MIMO
communication systems. Simulation results demonstrate the performance
advantages of the proposed algorithms compared to existing low-resolution
hybrid beamforming designs, particularly for the one-bit resolution PS
scenario