research

Exploring Short-GRB afterglow parameter space for observations in coincidence with gravitational waves

Abstract

Short duration Gamma Ray Bursts(SGRB) and their afterglows are among the most promising electro-magnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broadband, visible across the entire electro-magnetic window from γ\gamma-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multi-dimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow-down the regions of afterglow parameter space for a uniform top-hat jet model which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multi-messenger astronomy with coincident GW-EM observations.Comment: Published in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions