In this article, we explore the potential of using sentence-level discourse
structure for machine translation evaluation. We first design discourse-aware
similarity measures, which use all-subtree kernels to compare discourse parse
trees in accordance with the Rhetorical Structure Theory (RST). Then, we show
that a simple linear combination with these measures can help improve various
existing machine translation evaluation metrics regarding correlation with
human judgments both at the segment- and at the system-level. This suggests
that discourse information is complementary to the information used by many of
the existing evaluation metrics, and thus it could be taken into account when
developing richer evaluation metrics, such as the WMT-14 winning combined
metric DiscoTKparty. We also provide a detailed analysis of the relevance of
various discourse elements and relations from the RST parse trees for machine
translation evaluation. In particular we show that: (i) all aspects of the RST
tree are relevant, (ii) nuclearity is more useful than relation type, and (iii)
the similarity of the translation RST tree to the reference tree is positively
correlated with translation quality.Comment: machine translation, machine translation evaluation, discourse
analysis. Computational Linguistics, 201