Polaritons are quasiparticles arising from the strong coupling of
electromagnetic waves in cavities and dipolar oscillations in a material
medium. In this framework, localized surface plasmon in metallic nanoparticles
defining optical nanocavities have attracted increasing interests in the last
decade. This interest results from their sub-diffraction mode volume, which
offers access to extremely high photonic densities by exploiting strong
scattering cross-sections. However, high absorption losses in metals have
hindered the observation of collective coherent phenomena, such as
condensation. In this work we demonstrate the formation of a non-equilibrium
room temperature plasmon-exciton-polariton condensate with a long range spatial
coherence, extending a hundred of microns, well over the excitation area, by
coupling Frenkel excitons in organic molecules to a multipolar mode in a
lattice of plasmonic nanoparticles. Time-resolved experiments evidence the
picosecond dynamics of the condensate and a sizeable blueshift, thus measuring
for the first time the effect of polariton interactions in plasmonic cavities.
Our results pave the way to the observation of room temperature superfluidity
and novel nonlinear phenomena in plasmonic systems, challenging the common
belief that absorption losses in metals prevent the realization of macroscopic
quantum states.Comment: 23 pages, 5 figures, SI 7 pages, 5 figure