In this paper, to break the limit of the traditional linear models for
synthetic aperture radar (SAR) image despeckling, we propose a novel deep
learning approach by learning a non-linear end-to-end mapping between the noisy
and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is
based on dilated convolutions, which can both enlarge the receptive field and
maintain the filter size and layer depth with a lightweight structure. In
addition, skip connections and residual learning strategy are added to the
despeckling model to maintain the image details and reduce the vanishing
gradient problem. Compared with the traditional despeckling methods, the
proposed method shows superior performance over the state-of-the-art methods on
both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table