research

Tunable Optoelectronic Properties of Triply-Bonded Carbon Molecules with Linear and Graphyne Substructures

Abstract

In this paper we present a detailed computational study of the electronic structure and optical properties of triply-bonded hydrocarbons with linear, and graphyne substructures, with the aim of identifying their potential in opto-electronic device applications. For the purpose, we employed a correlated electron methodology based upon the Pariser-Parr-Pople model Hamiltonian, coupled with the configuration interaction (CI) approach, and studied structures containing up to 42 carbon atoms. Our calculations, based upon large-scale CI expansions, reveal that the linear structures have intense optical absorption at the HOMO-LUMO gap, while the graphyne ones have those at higher energies. Thus, the opto-electronic properties depend on the topology of the {graphyne substructures, suggesting that they can be tuned by means of structural modifications. Our results are in very good agreement with the available experimental data.Comment: main text 29 pages + 4 figures + 1 TOC graphic (included), supporting information 21 page

    Similar works

    Full text

    thumbnail-image