research

Tunneling behavior of Ising and Potts models in the low-temperature regime

Abstract

We consider the ferromagnetic qq-state Potts model with zero external field in a finite volume and assume that the stochastic evolution of this system is described by a Glauber-type dynamics parametrized by the inverse temperature β\beta. Our analysis concerns the low-temperature regime β\beta \to \infty, in which this multi-spin system has qq stable equilibria, corresponding to the configurations where all spins are equal. Focusing on grid graphs with various boundary conditions, we study the tunneling phenomena of the qq-state Potts model. More specifically, we describe the asymptotic behavior of the first hitting times between stable equilibria as β\beta \to \infty in probability, in expectation, and in distribution and obtain tight bounds on the mixing time as side-result. In the special case q=2q=2, our results characterize the tunneling behavior of the Ising model on grid graphs.Comment: 13 figure

    Similar works