Neural networks are capable of learning rich, nonlinear feature
representations shown to be beneficial in many predictive tasks. In this work,
we use these models to explore the use of geographical features in predicting
colorectal cancer survival curves for patients in the state of Iowa, spanning
the years 1989 to 2012. Specifically, we compare model performance using a
newly defined metric -- area between the curves (ABC) -- to assess (a) whether
survival curves can be reasonably predicted for colorectal cancer patients in
the state of Iowa, (b) whether geographical features improve predictive
performance, and (c) whether a simple binary representation or richer, spectral
clustering-based representation perform better. Our findings suggest that
survival curves can be reasonably estimated on average, with predictive
performance deviating at the five-year survival mark. We also find that
geographical features improve predictive performance, and that the best
performance is obtained using richer, spectral analysis-elicited features.Comment: 8 page