To learn a semantic parser from denotations, a learning algorithm must search
over a combinatorially large space of logical forms for ones consistent with
the annotated denotations. We propose a new online learning algorithm that
searches faster as training progresses. The two key ideas are using macro
grammars to cache the abstract patterns of useful logical forms found thus far,
and holistic triggering to efficiently retrieve the most relevant patterns
based on sentence similarity. On the WikiTableQuestions dataset, we first
expand the search space of an existing model to improve the state-of-the-art
accuracy from 38.7% to 42.7%, and then use macro grammars and holistic
triggering to achieve an 11x speedup and an accuracy of 43.7%.Comment: EMNLP 201