CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Textile carbon reinforcement structures with integrated optical fibre sensors designed for SHM applications
Authors
Lourdes Shanika Alwis
Kort Bremer
+4 more
Reinhard Helbig
M. Kuhne
Bernhard Roth
Frank Weigand
Publication date
1 January 2017
Publisher
Bellingham, WA : S P I E - International Society for Optical Engineering
Doi
Cite
Abstract
An optical fibre-based strain sensor embroidered to a functionalised carbon structure (FCS) that can be used for structural health monitoring (SHM) is introduced. The aim of the design is not only to monitor strain, but also to act as a structural strengthening mechanism in the target application. The integration of optical fibres on the FCS is achieved by "interweaving" the two elements on a polymer textile infstrate in a grid formation using a specialised fabrication process. The thus obtained sensor was then characterised using a fibre optic Mach-Zehnder (MZ) interferometric setup where a variation in the fibre length, i.e. resulting from strain, would induce a variation in the interference pattern. To do so, two different functionalised skein samples (incorporating optical fibres) were infjected to varying elongation using a tensile testing machine by carefully incrementing the applied force. A good correlation between the applied force and measured length change was observed, showing the value of the dual-achievement of the proposed optical fibre-based mechanism in obtaining strain measurement while being utilised as a strengthening agent. © 2017 SPIE.BMBF/03ZZ034
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Institutionelles Repositorium der Leibniz Universität Hannover
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:www.repo.uni-hannover.de:1...
Last time updated on 12/08/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1117%2F12.2264915
Last time updated on 17/03/2019