Audio Word2Vec offers vector representations of fixed dimensionality for
variable-length audio segments using Sequence-to-sequence Autoencoder (SA).
These vector representations are shown to describe the sequential phonetic
structures of the audio segments to a good degree, with real world applications
such as query-by-example Spoken Term Detection (STD). This paper examines the
capability of language transfer of Audio Word2Vec. We train SA from one
language (source language) and use it to extract the vector representation of
the audio segments of another language (target language). We found that SA can
still catch phonetic structure from the audio segments of the target language
if the source and target languages are similar. In query-by-example STD, we
obtain the vector representations from the SA learned from a large amount of
source language data, and found them surpass the representations from naive
encoder and SA directly learned from a small amount of target language data.
The result shows that it is possible to learn Audio Word2Vec model from
high-resource languages and use it on low-resource languages. This further
expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098