A numerical solver for the elastic wave eigenmodes in acoustic waveguides of
inhomogeneous cross-section is presented. Operating under the assumptions of
linear, isotropic materials, it utilizes a finite-difference method on a
staggered grid to solve for the acoustic eigenmodes of the vector-field elastic
wave equation. Free, fixed, symmetry, and anti-symmetry boundary conditions are
implemented, enabling efficient simulation of acoustic structures with
geometrical symmetries and terminations. Perfectly matched layers are also
implemented, allowing for the simulation of radiative (leaky) modes. The method
is analogous to eigenmode solvers ubiquitously employed in electromagnetics to
find waveguide modes, and enables design of acoustic waveguides as well as
seamless integration with electromagnetic solvers for optomechanical device
design. The accuracy of the solver is demonstrated by calculating
eigenfrequencies and mode shapes for common acoustic modes in several simple
geometries and comparing the results to analytical solutions where available or
to numerical solvers based on more computationally expensive methods