We study theoretically spin transport through a single-molecule magnet (SMM)
in the sequential and cotunneling regimes, where the SMM is weakly coupled to
one ferromagnetic and one normalmetallic leads. By a master-equation approach,
it is found that the spin polarization injected from the ferromagnetic lead is
amplified and highly polarized spin-current can be generated, due to the
exchange coupling between the transport electron and the anisotropic spin of
the SMM. Moreover, the spin-current polarization can be tuned by the gate or
bias voltage, and thus an efficient spin injection device based on the SMM is
proposed in molecular spintronics.Comment: 4 figure