Multi-task learning leverages potential correlations among related tasks to
extract common features and yield performance gains. However, most previous
works only consider simple or weak interactions, thereby failing to model
complex correlations among three or more tasks. In this paper, we propose a
multi-task learning architecture with four types of recurrent neural layers to
fuse information across multiple related tasks. The architecture is
structurally flexible and considers various interactions among tasks, which can
be regarded as a generalized case of many previous works. Extensive experiments
on five benchmark datasets for text classification show that our model can
significantly improve performances of related tasks with additional information
from others