research

Holographic Heat engine within the framework of massive gravity

Abstract

Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the heat engines have a higher efficiency for the cases m2>0m^2>0 than for the case m=0m=0 when c1<0,c2<0c_1<0, c_2<0. Considering a specific example, we show that the maximum efficiency can reach 0.92190.9219 while the efficiency for m=0m=0 reads 0.50140.5014. The existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes. Not only the c1,c2,m2c_1, c_2, m^2 exert influence on the efficiency, but also the constant c3c_3 corresponding to the third massive potential contributes to the efficiency. When c1<0,c2<0,c30c_1<0, c_2<0, c_30 is higher than that of the case m=0m=0. By studying the ratio Ξ·/Ξ·C\eta/\eta_C, we also probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.Comment: 9pages,4figure

    Similar works

    Full text

    thumbnail-image