research

Finite Size Scaling in 2d Causal Set Quantum Gravity

Abstract

We study the NN-dependent behaviour of 2d\mathrm{2d} causal set quantum gravity. This theory is known to exhibit a phase transition as the analytic continuation parameter β\beta, akin to an inverse temperature, is varied. Using a scaling analysis we find that the asymptotic regime is reached at relatively small values of NN. Focussing on the 2d\mathrm{2d} causal set action SS, we find that βS\beta \langle S\rangle scales like Nν N^\nu where the scaling exponent ν\nu takes different values on either side of the phase transition. For β>βc\beta > \beta_c we find that ν=2\nu=2 which is consistent with our analytic predictions for a non-continuum phase in the large β\beta regime. For β<βc\beta<\beta_c we find that ν=0\nu=0, consistent with a continuum phase of constant negative curvature thus suggesting a dynamically generated cosmological constant. Moreover, we find strong evidence that the phase transition is first order. Our results strongly suggest that the asymptotic regime is reached in 2d\mathrm{2d} causal set quantum gravity for N65N \gtrsim 65.Comment: 32 pages, 27 figures (v2 typos and missing reference fixed

    Similar works