We introduce and study the properties of a periodic model interpolating
between the sine-- and the sinh--Gordon theories in 1+1 dimensions. This
model shows the peculiarities, due to the preservation of the functional form
of their potential across RG flows, of the two limiting cases: the sine-Gordon,
not having conventional order/magnetization at finite temperature, but
exhibiting Berezinskii-Kosterlitz-Thouless (BKT) transition; and the
sinh-Gordon, not having a phase transition, but being integrable. The
considered interpolation, which we term as {\em sn-Gordon} model, is performed
with potentials written in terms of Jacobi functions. The critical properties
of the sn-Gordon theory are discussed by a renormalization-group approach. The
critical points, except the sinh-Gordon one, are found to be of BKT type.
Explicit expressions for the critical coupling as a function of the elliptic
modulus are given.Comment: v2, 10 pages, 8 figures, accepted in J. Phys.