Most blind deconvolution methods usually pre-define a large kernel size to
guarantee the support domain. Blur kernel estimation error is likely to be
introduced, yielding severe artifacts in deblurring results. In this paper, we
first theoretically and experimentally analyze the mechanism to estimation
error in oversized kernel, and show that it holds even on blurry images without
noises. Then to suppress this adverse effect, we propose a low rank-based
regularization on blur kernel to exploit the structural information in degraded
kernels, by which larger-kernel effect can be effectively suppressed. And we
propose an efficient optimization algorithm to solve it. Experimental results
on benchmark datasets show that the proposed method is comparable with the
state-of-the-arts by accordingly setting proper kernel size, and performs much
better in handling larger-size kernels quantitatively and qualitatively. The
deblurring results on real-world blurry images further validate the
effectiveness of the proposed method.Comment: Accepted by WACV 201